作者:陳巍 博士,作者本人曾擔(dān)任華為系自然語言處理( NLP )企業(yè)的首席科學(xué)家。
存算一體/GPU架構(gòu)和AI專家,高級(jí)職稱。中關(guān)村云計(jì)算產(chǎn)業(yè)聯(lián)盟,中國光學(xué)工程學(xué)會(huì)專家,國際計(jì)算機(jī)學(xué)會(huì)(ACM)會(huì)員,中國計(jì)算機(jī)學(xué)會(huì)(CCF)專業(yè)會(huì)員。曾任AI企業(yè)首席科學(xué)家、存儲(chǔ)芯片大廠3D NAND設(shè)計(jì)負(fù)責(zé)人,主要成就包括國內(nèi)首個(gè)大算力可重構(gòu)存算處理器產(chǎn)品架構(gòu)(已在互聯(lián)網(wǎng)大廠完成原型內(nèi)測),首個(gè)醫(yī)療領(lǐng)域?qū)S肁I處理器(已落地應(yīng)用),首個(gè)RISC-V/x86/ARM平臺(tái)兼容的AI加速編譯器(與阿里平頭哥/芯來合作,已應(yīng)用),國內(nèi)首個(gè)3D NAND芯片架構(gòu)與設(shè)計(jì)團(tuán)隊(duì)建立(與三星對(duì)標(biāo)),國內(nèi)首個(gè)嵌入式閃存編譯器(與臺(tái)積電對(duì)標(biāo),已平臺(tái)級(jí)應(yīng)用)
先上參考網(wǎng)頁或論文。專業(yè)的讀者可以直接看paper。
今年12月1日,OpenAI推出人工智能聊天原型ChatGPT,再次賺足眼球,為AI界引發(fā)了類似AIGC讓藝術(shù)家失業(yè)的大討論。
據(jù)報(bào)道,ChatGPT在開放試用的短短幾天,就吸引了超過 100 萬互聯(lián)網(wǎng)注冊(cè)用戶。并且社交網(wǎng)絡(luò)流傳出各種詢問或調(diào)戲ChatGPT的有趣對(duì)話。甚至有人將ChatGPT比喻為“搜索引擎+社交軟件”的結(jié)合體,能夠在實(shí)時(shí)互動(dòng)的過程中獲得問題的合理答案。
ChatGPT 是一種專注于對(duì)話生成的語言模型。它能夠根據(jù)用戶的文本輸入,產(chǎn)生相應(yīng)的智能回答。這個(gè)回答可以是簡短的詞語,也可以是長篇大論。其中GPT是Generative Pre-trained Transformer(生成型預(yù)訓(xùn)練變換模型)的縮寫。
通過學(xué)習(xí)大量現(xiàn)成文本和對(duì)話集合(例如Wiki),ChatGPT能夠像人類那樣即時(shí)對(duì)話,流暢的回答各種問題。(當(dāng)然回答速度比人還是慢一些)無論是英文還是其他語言(例如中文、韓語等),從回答歷史問題,到寫故事,甚至是撰寫商業(yè)計(jì)劃書和行業(yè)分析,“幾乎”無所不能。甚至有程序員貼出了ChatGPT進(jìn)行程序修改的對(duì)話。
ChatGPT也可以與其他AIGC模型聯(lián)合使用,獲得更加炫酷實(shí)用的功能。例如上面通過對(duì)話生成客廳設(shè)計(jì)圖。這極大加強(qiáng)了AI應(yīng)用與客戶對(duì)話的能力,使我們看到了AI大規(guī)模落地的曙光。
我們首先了解下OpenAI是哪路大神。
OpenAI總部位于舊金山,由特斯拉的馬斯克、Sam Altman及其他投資者在2015年共同創(chuàng)立,目標(biāo)是開發(fā)造福全人類的AI技術(shù)。而馬斯克則在2018年時(shí)因公司發(fā)展方向分歧而離開。
此前,OpenAI 因推出 GPT系列自然語言處理模型而聞名。從2018年起,OpenAI就開始發(fā)布生成式預(yù)訓(xùn)練語言模型GPT(Generative Pre-trained Transformer),可用于生成文章、代碼、機(jī)器翻譯、問答等各類內(nèi)容。
每一代GPT模型的參數(shù)量都爆炸式增長,堪稱“越大越好”。2019年2月發(fā)布的GPT-2參數(shù)量為15億,而2020年5月的GPT-3,參數(shù)量達(dá)到了1750億。
GPT家族主要模型對(duì)比
ChatGPT 是基于GPT-3.5(Generative Pre-trained Transformer 3.5)架構(gòu)開發(fā)的對(duì)話AI模型,是InstructGPT 的兄弟模型。ChatGPT很可能是OpenAI 在GPT-4 正式推出之前的演練,或用于收集大量對(duì)話數(shù)據(jù)。
ChatGPT的主要特點(diǎn)
OpenAI使用 RLHF(Reinforcement Learning from Human Feedbac,人類反饋強(qiáng)化學(xué)習(xí)) 技術(shù)對(duì) ChatGPT 進(jìn)行了訓(xùn)練,且加入了更多人工監(jiān)督進(jìn)行微調(diào)。
此外,ChatGPT 還具有以下特征:
1)可以主動(dòng)承認(rèn)自身錯(cuò)誤。若用戶指出其錯(cuò)誤,模型會(huì)聽取意見并優(yōu)化答案。
2)ChatGPT 可以質(zhì)疑不正確的問題。例如被詢問 “哥倫布 2015 年來到美國的情景” 的問題時(shí),機(jī)器人會(huì)說明哥倫布不屬于這一時(shí)代并調(diào)整輸出結(jié)果。
3)ChatGPT 可以承認(rèn)自身的無知,承認(rèn)對(duì)專業(yè)技術(shù)的不了解。
4)支持連續(xù)多輪對(duì)話。
與大家在生活中用到的各類智能音箱和“人工智障“不同,ChatGPT在對(duì)話過程中會(huì)記憶先前使用者的對(duì)話訊息,即上下文理解,以回答某些假設(shè)性的問題。ChatGPT可實(shí)現(xiàn)連續(xù)對(duì)話,極大的提升了對(duì)話交互模式下的用戶體驗(yàn)。
對(duì)于準(zhǔn)確翻譯來說(尤其是中文與人名音譯),ChatGPT離完美還有一段距離,不過在文字流暢度以及辨別特定人名來說,與其他網(wǎng)絡(luò)翻譯工具相近。
由于 ChatGPT是一個(gè)大型語言模型,目前還并不具備網(wǎng)絡(luò)搜索功能,因此它只能基于2021年所擁有的數(shù)據(jù)集進(jìn)行回答。例如它不知道2022年世界杯的情況,也不會(huì)像蘋果的Siri那樣回答今天天氣如何、或幫你搜索信息。如果ChatGPT能上網(wǎng)自己尋找學(xué)習(xí)語料和搜索知識(shí),估計(jì)又會(huì)有更大的突破。
即便學(xué)習(xí)的知識(shí)有限,ChatGPT 還是能回答腦洞大開的人類的許多奇葩問題。為了避免ChatGPT染上惡習(xí), ChatGPT 通過算法屏蔽,減少有害和欺騙性的訓(xùn)練輸入。,查詢通過適度 API 進(jìn)行過濾,并駁回潛在的種族主義或性別歧視提示。
NLP/NLU領(lǐng)域已知局限包括對(duì)重復(fù)文本、對(duì)高度專業(yè)的主題的誤解,以及對(duì)上下文短語的誤解。
對(duì)于人類或AI,通常需接受多年的訓(xùn)練才能正常對(duì)話。NLP類模型不僅要理解單詞的含義,還要理解如何造句和給出上下文有意義的回答,甚至使用合適的俚語和專業(yè)詞匯。
NLP技術(shù)的應(yīng)用領(lǐng)域
本質(zhì)上,作為ChatGPT基礎(chǔ)的GPT-3或GPT-3.5 是一個(gè)超大的統(tǒng)計(jì)語言模型或順序文本預(yù)測模型。
與BERT模型類似,ChatGPT或GPT-3.5都是根據(jù)輸入語句,根據(jù)語言/語料概率來自動(dòng)生成回答的每一個(gè)字(詞語)。從數(shù)學(xué)或從機(jī)器學(xué)習(xí)的角度來看,語言模型是對(duì)詞語序列的概率相關(guān)性分布的建模,即利用已經(jīng)說過的語句(語句可以視為數(shù)學(xué)中的向量)作為輸入條件,預(yù)測下一個(gè)時(shí)刻不同語句甚至語言集合出現(xiàn)的概率分布。
ChatGPT 使用來自人類反饋的強(qiáng)化學(xué)習(xí)進(jìn)行訓(xùn)練,這種方法通過人類干預(yù)來增強(qiáng)機(jī)器學(xué)習(xí)以獲得更好的效果。在訓(xùn)練過程中,人類訓(xùn)練者扮演著用戶和人工智能助手的角色,并通過近端策略優(yōu)化算法進(jìn)行微調(diào)。
由于ChatGPT更強(qiáng)的性能和海量參數(shù),它包含了更多的主題的數(shù)據(jù),能夠處理更多小眾主題。ChatGPT現(xiàn)在可以進(jìn)一步處理回答問題、撰寫文章、文本摘要、語言翻譯和生成計(jì)算機(jī)代碼等任務(wù)。
BERT與GPT的技術(shù)架構(gòu)(圖中En為輸入的每個(gè)字,Tn為輸出回答的每個(gè)字)
說到ChatGPT,就不得不提到GPT家族。
ChatGPT之前有幾個(gè)知名的兄弟,包括GPT-1、GPT-2和GPT-3。這幾個(gè)兄弟一個(gè)比一個(gè)個(gè)頭大,ChatGPT與GPT-3更為相近。
ChatGPT與GPT 1-3的技術(shù)對(duì)比
GPT家族與BERT模型都是知名的NLP模型,都基于Transformer技術(shù)。GPT-1只有12個(gè)Transformer層,而到了GPT-3,則增加到96層。
InstructGPT/GPT3.5(ChatGPT的前身)與GPT-3的主要區(qū)別在于,新加入了被稱為RLHF(Reinforcement Learning from Human Feedback,人類反饋強(qiáng)化學(xué)習(xí))。這一訓(xùn)練范式增強(qiáng)了人類對(duì)模型輸出結(jié)果的調(diào)節(jié),并且對(duì)結(jié)果進(jìn)行了更具理解性的排序。
在InstructGPT中,以下是“goodness of sentences”的評(píng)價(jià)標(biāo)準(zhǔn)。
真實(shí)性:是虛假信息還是誤導(dǎo)性信息?
無害性:它是否對(duì)人或環(huán)境造成身體或精神上的傷害?
有用性:它是否解決了用戶的任務(wù)?
這里不得不提到TAMER(Training an Agent Manually via uative Reinforcement,評(píng)估式強(qiáng)化人工訓(xùn)練代理)這個(gè)框架。該框架將人類標(biāo)記者引入到Agents的學(xué)習(xí)循環(huán)中,可以通過人類向Agents提供獎(jiǎng)勵(lì)反饋(即指導(dǎo)Agents進(jìn)行訓(xùn)練),從而快速達(dá)到訓(xùn)練任務(wù)目標(biāo)。
TAMER框架論文
引入人類標(biāo)記者的主要目的是加快訓(xùn)練速度。盡管強(qiáng)化學(xué)習(xí)技術(shù)在很多領(lǐng)域有突出表現(xiàn),但是仍然存在著許多不足,例如訓(xùn)練收斂速度慢,訓(xùn)練成本高等特點(diǎn)。特別是現(xiàn)實(shí)世界中,許多任務(wù)的探索成本或數(shù)據(jù)獲取成本很高。如何加快訓(xùn)練效率,是如今強(qiáng)化學(xué)習(xí)任務(wù)待解決的重要問題之一。
而TAMER則可以將人類標(biāo)記者的知識(shí),以獎(jiǎng)勵(lì)信反饋的形式訓(xùn)練Agent,加快其快速收斂。TAMER不需要標(biāo)記者具有專業(yè)知識(shí)或編程技術(shù),語料成本更低。通過TAMER+RL(強(qiáng)化學(xué)習(xí)),借助人類標(biāo)記者的反饋,能夠增強(qiáng)從馬爾可夫決策過程 (MDP) 獎(jiǎng)勵(lì)進(jìn)行強(qiáng)化學(xué)習(xí) (RL) 的過程。
TAMER架構(gòu)在強(qiáng)化學(xué)習(xí)中的應(yīng)用
具體實(shí)現(xiàn)上,人類標(biāo)記者扮演對(duì)話的用戶和人工智能助手,提供對(duì)話樣本,讓模型生成一些回復(fù),然后標(biāo)記者會(huì)對(duì)回復(fù)選項(xiàng)打分排名,將更好的結(jié)果反饋回模型中,Agents同時(shí)從兩種反饋模式中學(xué)習(xí)——人類強(qiáng)化和馬爾可夫決策過程獎(jiǎng)勵(lì)作為一個(gè)整合的系統(tǒng),通過獎(jiǎng)勵(lì)策略對(duì)模型進(jìn)行微調(diào)并持續(xù)迭代。
在此基礎(chǔ)上,ChatGPT 可以比 GPT-3 更好的理解和完成人類語言或指令,模仿人類,提供連貫的有邏輯的文本信息的能力。
ChatGPT的訓(xùn)練過程分為以下三個(gè)階段:
第一階段:訓(xùn)練監(jiān)督策略模型
GPT 3.5本身很難理解人類不同類型指令中蘊(yùn)含的不同意圖,也很難判斷生成內(nèi)容是否是高質(zhì)量的結(jié)果。為了讓GPT 3.5初步具備理解指令的意圖,首先會(huì)在數(shù)據(jù)集中隨機(jī)抽取問題,由人類標(biāo)注人員,給出高質(zhì)量答案,然后用這些人工標(biāo)注好的數(shù)據(jù)來微調(diào) GPT-3.5模型(獲得SFT模型, Supervised Fine-Tuning)。
此時(shí)的SFT模型在遵循指令/對(duì)話方面已經(jīng)優(yōu)于 GPT-3,但不一定符合人類偏好。
ChatGPT模型的訓(xùn)練過程
第二階段:訓(xùn)練獎(jiǎng)勵(lì)模型(Reward Mode,RM)
這個(gè)階段的主要是通過人工標(biāo)注訓(xùn)練數(shù)據(jù)(約33K個(gè)數(shù)據(jù)),來訓(xùn)練回報(bào)模型。在數(shù)據(jù)集中隨機(jī)抽取問題,使用第一階段生成的模型,對(duì)于每個(gè)問題,生成多個(gè)不同的回答。人類標(biāo)注者對(duì)這些結(jié)果綜合考慮給出排名順序。這一過程類似于教練或老師輔導(dǎo)。
接下來,使用這個(gè)排序結(jié)果數(shù)據(jù)來訓(xùn)練獎(jiǎng)勵(lì)模型。對(duì)多個(gè)排序結(jié)果,兩兩組合,形成多個(gè)訓(xùn)練數(shù)據(jù)對(duì)。RM模型接受一個(gè)輸入,給出評(píng)價(jià)回答質(zhì)量的分?jǐn)?shù)。這樣,對(duì)于一對(duì)訓(xùn)練數(shù)據(jù),調(diào)節(jié)參數(shù)使得高質(zhì)量回答的打分比低質(zhì)量的打分要高。
第三階段:采用PPO(Proximal Policy Optimization,近端策略優(yōu)化)強(qiáng)化學(xué)習(xí)來優(yōu)化策略。
PPO的核心思路在于將Policy Gradient中On-policy的訓(xùn)練過程轉(zhuǎn)化為Off-policy,即將在線學(xué)習(xí)轉(zhuǎn)化為離線學(xué)習(xí),這個(gè)轉(zhuǎn)化過程被稱之為Importance Sampling。這一階段利用第二階段訓(xùn)練好的獎(jiǎng)勵(lì)模型,靠獎(jiǎng)勵(lì)打分來更新預(yù)訓(xùn)練模型參數(shù)。在數(shù)據(jù)集中隨機(jī)抽取問題,使用PPO模型生成回答,并用上一階段訓(xùn)練好的RM模型給出質(zhì)量分?jǐn)?shù)。把回報(bào)分?jǐn)?shù)依次傳遞,由此產(chǎn)生策略梯度,通過強(qiáng)化學(xué)習(xí)的方式以更新PPO模型參數(shù)。
如果我們不斷重復(fù)第二和第三階段,通過迭代,會(huì)訓(xùn)練出更高質(zhì)量的ChatGPT模型。
只要用戶輸入問題,ChatGPT 就能給予回答,是否意味著我們不用再拿關(guān)鍵詞去喂 Google或百度,就能立即獲得想要的答案呢?
盡管ChatGPT表現(xiàn)出出色的上下文對(duì)話能力甚至編程能力,完成了大眾對(duì)人機(jī)對(duì)話機(jī)器人(ChatBot)從“人工智障”到“有趣”的印象改觀,我們也要看到,ChatGPT技術(shù)仍然有一些局限性,還在不斷的進(jìn)步。
1)ChatGPT在其未經(jīng)大量語料訓(xùn)練的領(lǐng)域缺乏“人類常識(shí)”和引申能力,甚至?xí)槐菊?jīng)的“胡說八道”。ChatGPT在很多領(lǐng)域可以“創(chuàng)造答案”,但當(dāng)用戶尋求正確答案時(shí),ChatGPT也有可能給出有誤導(dǎo)的回答。例如讓ChatGPT做一道小學(xué)應(yīng)用題,盡管它可以寫出一長串計(jì)算過程,但最后答案卻是錯(cuò)誤的。
2)ChatGPT無法處理復(fù)雜冗長或者特別專業(yè)的語言結(jié)構(gòu)。對(duì)于來自金融、自然科學(xué)或醫(yī)學(xué)等非常專業(yè)領(lǐng)域的問題,如果沒有進(jìn)行足夠的語料“喂食”,ChatGPT可能無法生成適當(dāng)?shù)幕卮稹?/p>
3)ChatGPT需要非常大量的算力(芯片)來支持其訓(xùn)練和部署。拋開需要大量語料數(shù)據(jù)訓(xùn)練模型不說,在目前,ChatGPT在應(yīng)用時(shí)仍然需要大算力的服務(wù)器支持,而這些服務(wù)器的成本是普通用戶無法承受的,即便數(shù)十億個(gè)參數(shù)的模型也需要驚人數(shù)量的計(jì)算資源才能運(yùn)行和訓(xùn)練。,如果面向真實(shí)搜索引擎的數(shù)以億記的用戶請(qǐng)求,如采取目前通行的免費(fèi)策略,任何企業(yè)都難以承受這一成本。因此對(duì)于普通大眾來說,還需等待更輕量型的模型或更高性價(jià)比的算力平臺(tái)。
4)ChatGPT還沒法在線的把新知識(shí)納入其中,而出現(xiàn)一些新知識(shí)就去重新預(yù)訓(xùn)練GPT模型也是不現(xiàn)實(shí)的,無論是訓(xùn)練時(shí)間或訓(xùn)練成本,都是普通訓(xùn)練者難以接受的。如果對(duì)于新知識(shí)采取在線訓(xùn)練的模式,看上去可行且語料成本相對(duì)較低,但是很容易由于新數(shù)據(jù)的引入而導(dǎo)致對(duì)原有知識(shí)的災(zāi)難性遺忘的問題。
5)ChatGPT仍然是黑盒模型。目前還未能對(duì)ChatGPT的內(nèi)在算法邏輯進(jìn)行分解,因此并不能保證ChatGPT不會(huì)產(chǎn)生攻擊甚至傷害用戶的表述。
當(dāng)然,瑕不掩瑜,有工程師貼出了要求ChatGPT寫verilog代碼(芯片設(shè)計(jì)代碼)的對(duì)話??梢钥闯鯟hatGPT水平已經(jīng)超出一些verilog初學(xué)者了。
5,ChatGPT的未來改進(jìn)方向
2020年底,OpenAI前研究副總裁Dario Amodei帶著10名員工創(chuàng)辦了一個(gè)人工智能公司Anthropic。Anthropic 的創(chuàng)始團(tuán)隊(duì)成員,大多為 OpenAI 的早期及核心員工,參與過OpenAI的GPT-3、多模態(tài)神經(jīng)元、人類偏好的強(qiáng)化學(xué)習(xí)等。
2022年12月,Anthropic再次發(fā)表論文《Constitutional AI: Harmlessness from AI Feedback》介紹人工智能模型Claude。(arxiv.org/pdf/2212.0807)
CAI模型訓(xùn)練過程
Claude 和 ChatGPT 都依賴于強(qiáng)化學(xué)習(xí)(RL)來訓(xùn)練偏好(preference)模型。CAI(Constitutional AI)也是建立在RLHF的基礎(chǔ)之上,不同之處在于,CAI的排序過程使用模型(而非人類)對(duì)所有生成的輸出結(jié)果提供一個(gè)初始排序結(jié)果。
CAI用人工智能反饋來代替人類對(duì)表達(dá)無害性的偏好,即RLAIF,人工智能根據(jù)一套constitution原則來評(píng)價(jià)回復(fù)內(nèi)容。
ChatGPT雖然對(duì)話能力強(qiáng),但是在數(shù)理計(jì)算對(duì)話中容易出現(xiàn)一本正經(jīng)胡說八道的情況。
計(jì)算機(jī)學(xué)家Stephen Wolfram 為這一問題提出了解決方案。Stephen Wolfram 創(chuàng)造了的 Wolfram 語言和計(jì)算知識(shí)搜索引擎 Wolfram | Alpha,其后臺(tái)通過Mathematica實(shí)現(xiàn)。
ChatGPT與Wolfram | Alpha結(jié)合處理梳理問題
在這一結(jié)合體系中,ChatGPT 可以像人類使用 Wolfram|Alpha 一樣,與 Wolfram|Alpha “對(duì)話”,Wolfram|Alpha 則會(huì)用其符號(hào)翻譯能力將從 ChatGPT 獲得的自然語言表達(dá)“翻譯”為對(duì)應(yīng)的符號(hào)化計(jì)算語言。在過去,學(xué)術(shù)界在 ChatGPT 使用的這類 “統(tǒng)計(jì)方法” 和 Wolfram|Alpha 的 “符號(hào)方法” 上一直存在路線分歧。但如今 ChatGPT 和 Wolfram|Alpha 的互補(bǔ),給NLP領(lǐng)域提供了更上一層樓的可能。
ChatGPT 不必生成這樣的代碼,只需生成常規(guī)自然語言,然后使用 Wolfram|Alpha 翻譯成精確的 Wolfram Language,再由底層的Mathematica進(jìn)行計(jì)算。
雖然ChatGPT很強(qiáng)大,但其模型大小和使用成本也讓很多人望而卻步。
有三類模型壓縮(model compression)可以降低模型的大小和成本。
第一種方法是量化(quantization),即降低單個(gè)權(quán)重的數(shù)值表示的精度。比如Tansformer從FP32降到INT8對(duì)其精度影響不大。
第二種模型壓縮方法是剪枝(pruning),即刪除網(wǎng)絡(luò)元素,包括從單個(gè)權(quán)重(非結(jié)構(gòu)化剪枝)到更高粒度的組件如權(quán)重矩陣的通道。這種方法在視覺和較小規(guī)模的語言模型中有效。
第三種模型壓縮方法是稀疏化。例如奧地利科學(xué)技術(shù)研究所 (ISTA)提出的SparseGPT (arxiv.org/pdf/2301.0077)可以將 GPT 系列模型單次剪枝到 50% 的稀疏性,而無需任何重新訓(xùn)練。對(duì) GPT-175B 模型,只需要使用單個(gè) GPU 在幾個(gè)小時(shí)內(nèi)就能實(shí)現(xiàn)這種剪枝。
SparseGPT 壓縮流程
說到ChaGPT不得不提AIGC。
AIGC即利用人工智能技術(shù)來生成內(nèi)容。與此前Web1.0、Web2.0時(shí)代的UGC(用戶生產(chǎn)內(nèi)容)和PGC(專業(yè)生產(chǎn)內(nèi)容)相比,代表人工智能構(gòu)思內(nèi)容的AIGC,是新一輪內(nèi)容生產(chǎn)方式變革,而且AIGC內(nèi)容在Web3.0時(shí)代也將出現(xiàn)指數(shù)級(jí)增長。
ChatGPT 模型的出現(xiàn)對(duì)于文字/語音模態(tài)的 AIGC 應(yīng)用具有重要意義,會(huì)對(duì)AI產(chǎn)業(yè)上下游產(chǎn)生重大影響。
從下游相關(guān)受益應(yīng)用來看,包括但不限于無代碼編程、小說生成、對(duì)話類搜索引擎、語音陪伴、語音工作助手、對(duì)話虛擬人、人工智能客服、機(jī)器翻譯、芯片設(shè)計(jì)等。從上游增加需求來看,包括算力芯片、數(shù)據(jù)標(biāo)注、自然語言處理(NLP)等。
大模型呈爆發(fā)態(tài)勢(更多的參數(shù)/更大的算力芯片需求)
隨著算法技術(shù)和算力技術(shù)的不斷進(jìn)步,ChatGPT也會(huì)進(jìn)一步走向更先進(jìn)功能更強(qiáng)的版本,在越來越多的領(lǐng)域進(jìn)行應(yīng)用,為人類生成更多更美好的對(duì)話和內(nèi)容。
最后,作者問存算一體技術(shù)在ChatGPT領(lǐng)域的地位(作者本人目前在重點(diǎn)推進(jìn)存算一體芯片的產(chǎn)品落地),ChatGPT想了想,大膽的預(yù)言存算一體技術(shù)將在ChatGPT芯片中占據(jù)主導(dǎo)地位。(深得我心)
來源:https://zhuanlan.zhihu.com/p/590655677
電話:0755-26727961 / 26727962 / 26727968
業(yè)務(wù)郵箱:Sales@jhongtech.com